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Abstract. An original mathematical approach for the diffraction of an electromagnetic skew-
incident wave by a wedge allows us to reduce such a problem to new elementary functional
equations. Using this method, we present an exact analytical solution with closed form
expressions for a class of wedge of any angle with a certain type of anisotropic boundary
condition which does not require any field component to vanish on the faces. We thereby
consider the important case where the principal axes of anisotropy are along and normal to the
edge, the relative impedance matrix attached to each face being diagonal with its determinant
equal to unity.

1. Introduction

The research of a complete explicit solution for the diffraction of an electromagnetic skew-
incident plane wave by a wedge with anisotropic impedance boundary conditions is a very
delicate mathematical problem: instead of being uncoupled as in the case of isotropic
boundary conditions and normal incidence on the edge (Bernard 1987) the components of
the electric and magnetic fields parallel to the edge can now be coupled by two equations
by face as in Vaccaro (1980), Bernard (1990a) and Lyalinov (1994). In that case, the
expression of the field with Sommerfeld–Maliuzhinets integrals amounts to dealing with
vector functional equations for two unknown analytical spectral functions. As already
noted for the Wiener–Hopf equations (see Jones (1991)), the difficulty then comes from
the fact that the method developed for the scalar case (see Maliuzhinets (1958a)) cannot
be used for the vector case which involves matrices and thus no commutative algebras.
Specific approaches are then necessary for this case. The method of Vaccaro (1980) is
suitable when the field components along the normal toone of the wedge faces can be
used independently to express boundary conditions onboth faces, which implies some
particular choices of geometry as the half-plane, the plane discontinuity, or the right-angled
wedge. In other respects, we have also the method of Lyalinov (1994) who approaches
the solution of coupled functional equations by an original iterative method, which is all
the more convergent as the coupling becomes weaker. Here, we choose to use the method
developed in Bernard (1990a) for wedge problems at skew incidence, in order to analyse the
case of a wedge with any angle and anisotropic impedance boundary conditions requiring
no field component to vanish on the faces. As indicated in Bernard (1995), we consider
the important category of wedges whose principal axes of anisotropy are along the edge
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596 J M L Bernard

and normal to it; an exact explicit expression of the solution is then obtained when the
determinant of the diagonal impedance matrix attached to each face is equal to unity. Let
us note that this case of anisotropy corresponds to reflection coefficients in geometrical
optics, which are independent of the polarization of the incident field when the plane of
incidence is perpendicular to the edge (normal incidence).

After we express the general problem in terms of coupled functional equations on
Maliuzhinets spectral functions in section 2, and reduce it by our method in section 3, we
exhibit a new class of canonical cases in section 4 with closed-form expressions of spectral
functions. We give some details concerning the decomposition of the resulting field. Certain
demonstrations are given in the appendices to maintain the clarity of the paper.

Before proceeding, let us mention some reasons why the determination of the analytical
solution, for such a simply shaped object with an edge, is important. First physically,
these solutions can help to interpret more easily the diffraction mechanisms induced by the
edge. Secondly numerically, they can be used not only when a radiation is defined as the
summation of elementary object contributions or when a perturbation method uses them as
a base, but also to test or to hybridize pure numerical schemes of calculus. Thirdly, from a
mathematical viewpoint, this investigation may open a new way for the analysis of a class
of complex well-posed mathematical problems.

2. Position of the problem

2.1. Representation of the field and general properties

The geometry of the wedge is here defined in cylindrical coordinates(ρ, ϕ, z) by |ϕ| > 8,
with the edge parallel to thez-axis (figure 1). An incoming plane wave, with a harmonic time
dependence eiωt from now on assumed and suppressed throughout, illuminates the wedge.
This incident field is characterized by thez-components of the electric and magnetic fields
(see appendix 1), respectivelyEiz andHi

z , given by∣∣∣∣ Eiz(ρ, ϕ, z)H i
z (ρ, ϕ, z)

=
∣∣∣∣ D1

D2/Zo
eik[ρ sinβ cos(ϕ−ϕ′)−z cosβ]. (1)

Figure 1. Geometry of the wedge.
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Figure 2. Contour of integrationγ for complexk.

In expression (1),k(Im k 6 0) andZo denote respectively the exterior medium wavenumber
and impedance,β is the angle of the incident direction with the edge of the wedge.

All electrical characteristics are assumed to be independent ofz. The expressions of the
z-components of the electric and magnetic fields, respectivelyEz andHz, from which derives
all the field satisfying Maxwell equations (see appendix 1), can be sought, for|ϕ| 6 8, in
the form of Sommerfeld–Maliuzhinets integrals (Maliuzhinets 1958b), as follows:∣∣∣∣Ez(ρ, ϕ, z)Hz(ρ, ϕ, z)

= e−ikz cosβ

2π i

∫
γ

∣∣∣∣ f1(α + ϕ)
f2(α + ϕ)/Zo

eikρ sinβ cosα dα. (2)

Here,f1,2 are analytic functions and the odd pathγ (see figure 2) consists of two branches:
one, namedγ+, going from (i∞+ arg(ik) + (a1 + π/2)) to (i∞+ arg(ik) − (a2 + π/2))
with 0< a1,2 < π , as Imα > d, above all the singularities of the integrand (possible from
subsequent condition (c)), and the other, namedγ−, obtained by the inversion ofγ+ with
respect toα = 0. From its form, the expression given in (2) verifies the wave equation
(1+ k2)u = 0, with 1 the Laplacian operator.

From Maliuzhinets (1958), Tuzhilin (1973a) and Bernard (1994, 1995), we can assume
some general properties of the field:

(a′) the only incoming plane wave is the incident field;
(b′) every field component is locally summable with respect toρ and eachz-component

tends to a finite value independent ofϕ in the vicinity of the edge;
(c′) the field, except possibly its geometrical optics part when Imk 6= 0, does not grow

at infinity.
The first condition (a′) is satisfied when:
(a) [fj (α)−Dj/(α − ϕ′)] is regular for|Reα| 6 8 (j = 1, 2).
The second one (b′) is verified when (see appendix 2):
(b) some constantsg±j and some analytic functionhj exist, such as|fj (α + ϕ) ∓

fj (−α + ϕ) − g±j | < |hj (α)| on and within someγ+, when |Reϕ| 6 8, the functionhj
being summable on the loopγ+ and regular on and within it(j = 1, 2).

The third condition (c′) means:
(c) fj (α + ϕ) has no singularity (except possibly those corresponding to plane waves

coming from infinity and attached to the incident and reflected fields) in the zone defined
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by Re(ik cosα) > 0 as|Reα| < π , |Reϕ| 6 8(j = 1, 2).
These conditions will be particularly useful to obtain the uniqueness of the solution in

our case.

2.2. Boundary conditions and vectorial functional equations on thefj

We consider an anisotropic impedance boundary condition on each face of the wedge
ϕ = ±8. The electric fieldE and the magnetic fieldH are then related by(E−n±(n±E)) =
(Z±)(n± ∧H), wheren± is the unit vector along the outward-pointing normal to the face,
and(Z±)/Zo the relative impedance operator. This type of boundary condition commonly
used in scattering theory can be constructed to recover closely the geometrical reflection
coefficients at any incidence. Assuming high permittivity and permeability characteristics
of each face, the operator(Z±)/Zo can be approximated by a constant tensor as in Lyalinov
(1994). Letting the tangential vectors inρ and z components, we then consider the case
where(Z±) is given by a diagonal constant matrix. Expressing all components of the fields
as functions ofEz andHz (see appendix 1), we can write[

∓ cosβ
∂Ez

∂ρ
∓ ∂(ZoHz)

ρ∂ϕ
− ikη±h (sin2 β)ZoHz

] ∣∣∣∣
ϕ=±8

= 0[
∓ ∂Ez
ρ∂ϕ
− ik(sin2 β)Ez/η

±
e ± cosβ

∂(ZoHz)

∂ρ

] ∣∣∣∣
ϕ=±8

= 0

(3)

where theη±e,h are the diagonal elements of the relative impedance matrix following
(Z±)11/Zo = η±h , (Z±)22/Zo = η±e . A condition of strict passivity is assumed, implying
Re(η±e,h) > 0 so that the geometrical optics reflection coefficients are of modulus inferior
to unity. Besides, we note that ifη±e = η±h , we recover the usual condition for isotropic
constant impedance (also called the Leontovich boundary condition).

We can use the integral expressions ofEz andHz given in (2) to write the impedance
boundary conditions on each faceϕ = ±8. By differentiation of (2) and integration by
parts, we then obtain∫

γ

dα

[
A±α

∣∣∣∣ f1(α ±8)
f2(α ±8) − A

±
−α

∣∣∣∣ f1(−α ±8)
f2(−α ±8)

]
eikρ sinβ cosα = 0 (4)

whereA±α is a matrix function ofα, given by

A±α =
[

cosβ cosα sinα ± η±h sinβ
sinα ± sinβ/η±e − cosβ cosα

]
. (5)

As in Bernard (1990a), we use an inversion theorem (see appendix 3) due to Maliuzhinets
(1958b), which we can apply when the term within brackets in (4) is O(eτ |Imα|) as
|Imα| → ∞, τ being a constant. In our case, the condition (b) is satisfied, which implies
f (α) = O(1) and |Imα| → ∞, and soτ = 1. This gives us

A±α

∣∣∣∣ f1(α ±8)
f2(α ±8) − A

±
−α

∣∣∣∣ f1(−α ±8)
f2(−α ±8) = sinα

∑
16n6τ

(cosα)n−1

∣∣∣∣ c1n

c2n
= sinα

∣∣∣∣ c1

c2
(6)

with constant numbersc1, c2. Let us note that the system of vectorial functional equations (6)
extends the meromorphy of the functionsfj (j = 1, 2), that was initially assumed in the
band|Reα| 6 8 from (a), to the whole complex plane.

Note. In the case of some more general boundary conditions, where the term within
brackets in (4) would be O(eτ |Imα|) as |Imα| → ∞ with τ arbitrary, the constantsc1n, c2n

could be necessary in order to satisfy supplementary conditions at the edge, or to satisfy
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the condition (c). However, in our case, withA±α given by (5), it is interesting to note that
we could add to thefj some constants (permitted from the oddness ofγ ) in order to make
the c1,2 vanish.

3. Reduction of the problem

We will now adapt the general procedure defined in Bernard (1990a) to reduce the coupled
functional equations (see also Bernard (1995)). The heart of the matter is to modify (6), in
a way which preserves the equivalence with the initial system of equations.

In our method, we search for an even or odd linear operatorB±α so that we can write
B±α A

±
α = Cα±8 with B±−α = ε±B±α , (ε±)2 = 1. This gives us, whenB±α is applied to (6),∣∣∣∣ t1(α ±8)t2(α ±8) − ε

±
∣∣∣∣ t1(−α ±8)t2(−α ±8) = B

±
α sinα

∣∣∣∣ c1

c2
(7)

with

∣∣∣∣ t1(α)t2(α)
= Cα

∣∣∣∣ f1(α)

f2(α)
. We then have a system of twoindependentsets of Maliuzhinets-

type equations on thetj (j = 1, 2). The general solution of this type of equations on
each functiontj is known (Maliuzhinets, Tuzhilin, Bernard) when the considered function
is meromorphicin the strip|Reα| 6 8, with a finite set of poles in this band. Now, since
the functionsfj have also to satisfy, from (a), the property ofmeromorphyin the band
|Reα| 6 8, it is reasonable to search for a matrixCα satisfying it too. The matrixCα has,
besides, to be inversible in order to recover in a unique manner the functionsfj from the
tj . Note that we do not need to specify in advance the regularity and behaviour at infinity
of the matrixCα. OnceCα is chosen, the properties (a)–(c) of the functionsfj will give us
those satisfied by thetj . This will imply (as we will see later for the new canonical case
exhibited) the uniqueness of choice for thetj and hence for the complete solution.

Thus, the main problem is now to findCα as previously defined, which is equivalent to
searching for(Cα)−1 such as

(A±α )(Cα±8)
−1− ε±(A±−α)(C−α±8)−1 = 0 (8a)

or, by multiplication withε±Cα±8(A±α )
−1:

(Cα±8)[(A±α )
−1(A±−α)](C−α±8)

−1 = ε±
[

1 0
0 1

]
. (8b)

In (8), (Cα)−1 has to be meromorphic as|Reα| 6 8, with det((Cα)−1) 6= 0 (the zero
function) so thatCα remains defined, and(ε±)2 = 1. We note, that asA±α is meromorphic,
the previous equation (8a) extends the meromorphy ofCα to the whole complex plane (the
set of poles ofCα is completely defined from (8a) and the condition (a).

Then, we let

(Cα)
−1 =

[
b(α) −c(α)
−d(α) a(α)

]
. (9)

From now on, for the sake of simplicity,

a+ = a(α ±8) a− = a(−α ±8)
and so on forb, c, d; the superscript index of faceϕ = ±8 can be omitted for all quantities.

We can write the equation (8b) in the following form:

1

det(Aα)

−c+b−g
(
a+
c+
,
d−
b−

)
c+c−g

(
a+
c+
,
a−
c−

)
b+b−g

(
d+
b+
,
d−
b−

)
c−b+g

(
d+
b+
,
a−
c−

)
 = [ ε 0

0 ε

]
(a+b+ − c+d+) (10a)
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with

g(r, s) = n(α).r.s − (l(α).r − l(−α).s)− p(α) (10b)

(Aα)
−1(A−α) =

[
l(α) n(α)

p(α) l(−α)
]

1

detAα
(10c)

where we remark thatn andp are odd functions.
Whenn is not zero (i.e. the coupled case),c andb cannot be equal to the function zero

(see appendix 5). Thus, we can rewrite the nondiagonal terms of (10a) as

g

(
a+
c+
,
a−
c−

)
= 0 (11a)

g

(
d+
b+
,
d−
b−

)
= 0 (11b)

with a/c 6= d/b (since det(Cα)−1 6= 0).
Then, we can use the two remaining equations of (10a). After some manipulations

detailed in appendix 4, it is found that the conditions on the diagonal terms in (10a) are
strictly equivalent to the following equalities(

b+
c+

)(
b−
c−

)−1

= −g(a+/c+, d−/b−)
g(d+/b+, a−/c−)

(11c)

(b+a+)
(b−a−)

= det(A−α)
det(Aα)

1− (c−/a−)(d−/b−)
1− (c+/a+)(d+/b+) (11d)

when (11a) and (11b) are satisfied. Equations (11c) and (11d) can be solved after their
second member is defined, i.e. oncea/c, d/b solutions of (11a) and (11b) are determined.
So defined, the set of equations (11a–d) can be particularly efficient.

4. The closed-form solution for the caseη±hη
±
e = 1

4.1. The exact analytical expression of thefj (j = 1, 2)

We now choose to solve in closed form the important case where the relative impedance
coefficients satisfyη±h η

±
e = 1 with Re(η±e,h) > 0 (see Bernard (1995)), which is often

named the balanced hybrid condition. This condition is well known in the theory of horns
(Lier et al 1987) and absorbers (Yee and Chang 1991). In this case, the geometrical optics
reflection coefficients are independent of the polarization at normal incidence to the edge.

As indicated previously, we will seek the elements of(Cα)
−1 and then determine the

expressions of thefj (j = 1, 2).

4.1.1. Determination of(C−1
α ). We now solve the equations (11a–d) which concern the

elements of(C−1
α ). We need at first to define the elements of (10c). By elementary calculus

on A±α , we have

l±(α) = cos2 β sin2 α − cos2 α − (η±h /η±e − 1) sin2 β (12a)

n(α) = −p(α) = cosβ sin(2α) (12b)

det(A±α ) = −
(

sinα sinβ ±
(
η±h + cosβ

√
(η±h )2− 1

))
×
(

sinα sinβ ±
(
η±h − cosβ

√
(η±h )2− 1

))
(12c)
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where(η±h + ε cosβ
√
(η±h )2− 1) = sin(β)× sin(θ±1 − εiδ) with η±h = sinθ±1 (0< Reθ±1 6

π/2), δ = ln(tan(β/2)), ε = + or −1.
As the functionl(α) is an even function, it is possible, for the treatment of (11a) and

(11b), to put

a(α)

c(α)
= tan(van(α))

d(α)

b(α)
= tan(van(α)+ π/2) (13)

which gives us a (necessary and sufficient) condition onvan,

v′an(α ±8)+ v′an(−α ±8) =
(

arctan

(
n(α)

l±(α)

))′
(14)

where (.)′ denotes the derivative of the function (.). From the use of the properties of
Fourier transform as in Maliuzhinets (1958b), Vaccaro (1980) and Bernard (see appendix 6),
a regular solution of (14) for|Reα| < 8, with v′an(α) = O(1) as |Imα| → ∞, is possible
in a double integral form:

v′an(α) =
i√
2π

v.p.
∫ i∞

−i∞

(
R+(ω)e−iω8

i sin(2ω8)
− R−(ω)e

iω8

i sin(2ω8)

)
e−iωα dω (15a)

with

R±(ω) = −i

2
√

2π

∫ i∞

−i∞
S±(α′)eiωα′ dα′ (15b)

andS±(α) = (arctan(n(α)/ l(α)))′. In (15a) the term v.p. signifies that we take the principal
value of the integral. We obtain a closed-form expression ofR± by the method of residues,
which yields, for|Reα| < 8,

van(α) = i
∑
±

∑
ε=+1,−1

(
ε

∫ ∞
0

e−ν(θ
±
1 −εiδ) − e−ν(π−θ

±
1 +εiδ)

2× (1− e−νπ )

×∓(cosh(ν(α ±8))− 1)

ν sinh(2ν8)
dν

)
+ vo (16a)

vo being an arbitrary constant. Now, we can use the expansion

(1− x)−1 =
N∑
l=0

xl + x(N+1)/(1− x)

with the expression, obtained from Gradshteyn (form. 3.541–2),∫ ∞
0

e−µx
cosh(βx)− 1

x sinh(bx)
dx = ln

(
0
(

1
2 + 1

2b (µ+ β)
)

0
(

1
2 + µ

2b

) × 0
(

1
2 + 1

2b (µ− β)
)

0
(

1
2 + µ

2b

) )
to expand the previous integral expression ofvan with 0 being the gamma function. By
doing so, we obtain the following efficient expression for|Reα| < 8+ (N + 1)π ,

van(α) = i
∑
±

∑
ε=+1,−1

( N∑
l=0

ln

([
al × 0

(
1

2
+ 1

48
(−(α ±8)+ θ±1 − εiδ + lπ)

)∓ 1
2

×0
(

1

2
+ 1

48
((α ±8)+ θ±1 − εiδ + lπ)

)∓ 1
2

×0
(

1

2
+ 1

48
((α ±8)+ π − θ±1 + εiδ + lπ)

)± 1
2
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×0
(

1

2
+ 1

48
(−(α ±8)+ π − θ±1 + εiδ + lπ)

)± 1
2
]ε)

+ε
∫ ∞

0

e−ν(θ
±
1 −εiδ) − e−ν(π−θ

±
1 +εiδ)

2× (1− e−νπ )

×e−ν(N+1)π ∓(cosh(ν(α ±8))− 1)

ν sinh(2ν8)
dν

)
+ vo (16b)

with

al = 0
(

1

2
+ 1

48
(θ±1 − εiδ + lπ)

)/
0

(
1

2
+ 1

48
(π − θ±1 + εiδ + lπ)

)
.

The constantvo can be chosen arbitrarily. So we can letal = 1 andvo = 0 in the previous
expression (16b) (as N is finite) and then define a new solution of (14)van(,N), which
depends onN (the termvan(,N)(α)− van(,N)(α′) does not depend onN ).

Some properties of the expression (16b) for van can now be detailed. We note for
(13) that exp(2ivan), and then tan(van) and cotan(van), are meromorphic, even ifvan, given
by (16b), is multiform. Furthermore, we can also consider the behaviour ofvan when
|Imα| → ∞. At infinity, the principal contribution for the evaluation of the above integral
comes from the vicinity ofν = 0. Then, since we have, from Gradshtein (1980),∫ ∞

0

1− cosh(νx)

ν sinh(2ν8)
dν = −

∫ x

0

π

48
tan

(
πx ′

48

)
dx ′ = ln

(
cos

(πx
48

))
for |Rex| < 28

we easily obtainvan(α) = O(1) as |Imα| → ∞. By another way indicated in appendix 6,
we obtain more preciselyvan(α) = A1(1+ O(e−c|Imα|)) as |Imα| → ∞, A1 and c > 0
being some constants. In other respects we remark that (14) can be used with (16b) to
easily extend the calculus ofvan to the whole complex plane.

The expression ofvan being found, we can use the fact that, from (13),a/c = −b/d =
tan(van) to express directly (11c–d) in a new form. We can then write(

b+
c+

)(
b−
c−

)−1

=
(
a+
c+

)(
a−
c−

)−1

(17a)(
a+b+
a−b−

)
= detA±−α

detA±α

1+ (cot(v(−α ±8)))2
1+ (cot(v(α ±8)))2 . (17b)

This leads us to choosea = b. From (13),a/c = −b/d, thus we haved = −c. We then
obtain, from (17b),

a(α) = 9an(α) sin(van(α)) c(α) = 9an(α) cos(van(α)) (18)

where the (necessary and sufficient) condition on9an(α) is(
9an(α ±8)
9an(−α ±8)

)2

= detA±−α
detA±α

. (19)

We transform (19) in a standard manner by taking the logarithmic derivative of each
side to obtain a functional equation of the same type as (14),

9 ′an
9an

(α ±8)+ 9
′
an

9an
(−α ±8) = S±(α) (20)

with S±(α) = (ln(detA±−α/ detA±α ))
′/2. We can solve (20) as previously done for (14).

We begin by writing a double-integral expression of a solution (see appendix 6), regular
for |Reα| < 8, and O(1) as |Imα| → ∞. This expression is then reduced to a simple
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integral form by the method of residues. By means of9 ′an/9an, we then develop9an, for
|Reα| < 8,

9an(α) = 9o×
∏

ε=−1et+1

∏
±

(
exp

(∫ ∞
0

e−ν(θ
±
1 −εiδ) + e−ν(π−θ

±
1 +εiδ)

2× (1+ e−νπ )

×1− cosh(ν(α ±8))
ν sinh(2ν8)

dν

))
(21a)

where9o denotes an arbitrary constant. We now use the expansion

(1+ x)−1 =
N∑
l=0

(−x)l + (−x)(N+1)/(1+ x)

with the expression∫ ∞
0

e−µx
cosh(βx)− 1

x sinh(bx)
dx = ln

(
0
(

1
2 + 1

2b (µ+ β)
)

0
(

1
2 + µ

2b

) × 0
(

1
2 + 1

2b (µ− β)
)

0
(

1
2 + µ

2b

) )
to expand the integral expression with the gamma function0, so that we obtain an efficient
expression for|Reα| < 8+ (N + 1)π which reads as

9an(α) = 9o×
∏

ε=−1et+1

∏
±

( N∏
l=0

[
bl × 0

(
1

2
+ 1

48
((α ±8)+ θ±1 − εiδ + lπ)

)− 1
2

×0
(

1

2
+ 1

48
(−(α ±8)+ θ±1 − εiδ + lπ)

)− 1
2

×0
(

1

2
+ 1

48
((α ±8)+ π − θ±1 + εiδ + lπ)

)− 1
2

×0
(

1

2
+ 1

48
(−(α ±8)+ π − θ±1 + εiδ + lπ)

)− 1
2
](−1)l

× exp

(∫ ∞
0
(−1)N+1× e−ν(θ

±
1 −εiδ) + e−ν(π−θ

±
1 +εiδ)

2× (1+ e−νπ )
× e−ν(N+1)π

×1− cosh(ν(α ±8))
ν sinh(2ν8)

dν

))
(21b)

with

bl = 0
(

1

2
+ 1

48
(θ±1 − εiδ + lπ)

)
× 0

(
1

2
+ 1

48
(π − θ±1 + εiδ + lπ)

)
.

The constant9o can be chosen arbitrarily. So we can letbl = 1 and 9o = 1 in
expression (21b) (asN is finite) and then define a new solution of (20)9an(,N), which
depends onN (but the term9an(,N)(α)/9an(,N)(α′) does not depend onN ).

Some properties of expression (21b) of 9an can be discussed. This function has no
zero or pole in the band|Reα| 6 8, and with expression (16b) of van(α), the functions
9an(α) exp(±ivan(α)), and every elements ofC−1

α , are meromorphic. We can also consider
the behaviour of9an as |Imα| → ∞. At infinity, the principal contribution for the
evaluation of the above integral comes from the vicinity ofν = 0. Then, since we have∫ ∞

0

1− cosh(νx)

ν sinh(2ν8)
dν = −

∫ x

0

π

48
tan

(
πx ′

48

)
dx ′ = ln

(
cos

(πx
48

))
for |Rex| < 28
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we easily derive9an(α) = O(cos(µα)) with µ = π/28, or more precisely, from appendix 6,
9an(α) = A2 cos(µα)(1+O(e−c|Imα|)), A2 andc > 0 being some constants.

The principal problem of the determination of aCα satisfying (8) and being meromorphic
is thus solved with our choice (ε± = 1 in (8), since the term(C±8)(A±α=0)

−1 and its inverse
are definite).

Some properties of(Cα)−1 and Cα can be detailed from the ones of9an and van.
The matrix (Cα)−1 is regular (except at infinity) for|Reα| 6 8, and meromorphic in
the whole complex plane. We have det((Cα)

−1) = (9(α))2, and then(Cα) is regular
as its inverse for|Reα| 6 8. Concerning the behaviour at infinity, we find that
(Cα)

−1 = A3 cos(µα)(1+O(e−c|Imα|)) with µ = π/28,A3 andc > 0 being some constants.

4.1.2. Determination of thefj . The principal properties ofCα now defined, we can deduce
some properties of the functionstj of (7), using∣∣∣∣ t1(α)t2(α)

= Cα
∣∣∣∣ f1(α)

f2(α)

as the meromorphic functionsfj satisfy the properties (a) and (b). The functionstj have
to be meromorphic, regular in the band|Reα| 6 8 except for one simple pole atα = ϕ′,
with tj (α) = O(1/ cos(µα)), µ = π/28.

We can then specify the expressions of thetj . It is known (Tuzhilin 1970) thatσ(α) =
µ cos(µϕ′)(sin(µα) − sin(µϕ′))−1 is the unique function, with the properties oftj defined
just above, which satisfies the set of homogenous equationsσ(α ± 8) − σ(−α ± 8) = 0
(i.e. (7) without second member, withε± = 1) and which has a residue equal to one at the
poleα = ϕ′. The solution of (7) is then necessarily equal to the sum of two terms, namely
a constant vector multiplied byσ(α), and a solution of (7) regular and O(1/ cos(µα)) in
the strip|Reα| 6 8.

The constant vector being taken so that condition (a) is satisfied, we have a unique
definition of thetj . We can then write the solution of (6) satisfying (a) and (b), as follows∣∣∣∣ f1(α)

f2(α)
= (Cα)−1(Cϕ′)

∣∣∣∣D1

D2
σ(α)+ (Cα)−1(Tα)

∣∣∣∣ c1

c2
(22)

where the second term on the right-hand side is the particular solution of (6) regular and
O(1) for |Reα| 6 8. As can be seen by inspection of (6), this latter term is, in fact, equal
to a constant vector which can be set to zero because of the oddness ofγ .

Now that the expression of thefj has been defined, it seems interesting to specify some
elements concerning the conditions (b) and (c) for these functions. About (b), we observe,
from the behaviours at infinity of9an and van previously determined, that thefj satisfy
some stronger condition than (b) consisting of:|fj (α) − fj (±i∞)| < B/ cosh(cImα) as
Imα → ±∞, with B and c being some strictly positive constants. One can also verify
with (22) that the condition (c) is satisfied. Because the matrix(Cα)

−1 is analytic in the
strip |Reα| 6 8, we can deduce all its poles from (8) and from the knowledge of the
zeros of detA±α (given by (12c)). Consequently, we find that(Cα)−1 has no pole in the
band |Reα| 6 π + 8 (more precisely in the strip|Reα| < 8 + Re(π + θ±1 − iεδ) with
Reθ±1 > 0). Moreover, asσ(α) contains only poles of geometrical optics (these poles,
depending only on8 and the incident angleϕ′, are detailed in section 4.2), the condition
(c) is verified.

Developing the expression (22), we have finally the exact closed-form expression:[
f1(α)

f2(α)

]
= 9an(α)

9an(ϕ′)

[
cos1(α) sin1(α)
− sin1(α) cos1(α)

] [
D1

D2

]
σ(α) (23)
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where1(α) = van(α)− van(ϕ′).
It should be noted that, at normal incident(β = π/2), van(α) is a constant and the

expression given by Maliuzhinets (1958a) is recovered. Referring to Bernard (1990a, b),
the reader will also easily verify the isotropic limit case withη±h = η±e = 1.

4.2. About the decomposition of the field

The integral expressions of thez-components of the field are now explicitly defined by
(23) and (2) but it is interesting to show how to develop them, as in Maliuzhinets (1958a),
Tuzhilin (1973a), Bernard (1987) and Lyalinov (1994), in order to exhibit the terms of
geometrical optics fields (incident field, reflected fields) and the terms specifically excited
by the edge (leaky waves, and edge diffracted wave).

We then deform the integration pathγ to a steepest descent path (SDP), summing the
contributions of poles encountered during this deformation. The contour SDP consists of two
branches SDP±, respectively centred on±π , satisfying the equation Im(ik(cosα+1)) = 0
with ik(cosα + 1) 6 0 i.e. for k real positive, Re(α ∓ π)/2= arctan(tanh(Im (α ∓ π)/2)).
For the sake of simplicity, we now consider8 > π/2 and ϕ′ real. So, takingEz for
example, we have

Ez(ρ, ϕ, z) = Ezi +6E±2r +6E±zs,ε +
e−ik(z cosβ+ρ sinβ)

2π i

∫
SDP

f1(α + ϕ)eikρ sinβ(cosα+1) dα

(24)

where:
• the termEzi is related to the contribution of the poleα = ϕ′ of σ(α):

Ezi = U(π − |ϕ′ − ϕ|)e−ik(z cosβ−ρ sinβ cos(ϕ′−ϕ))

which is the incident field in the illuminated region, and zero in the shadow zone.U is the
Heaviside step function;
• the termsE±zr are the fields reflected by the facesϕ = ±8, and related to the other

poles ofσ(α) with |Reα| 6 π +8:

E±zr = U(π − | ± 28− (ϕ′ + ϕ)|)e−ik(z cosβ−ρ sinβ cos(±28−(ϕ′+ϕ)))

×Res(f1(α + ϕ))|α+ϕ=±28−ϕ′

• E±zs,ε are the nonuniform leaky waves terms with complex phase functions, related
to the polesα±s,ε of (Cα)−1 in the band|Reα| < 3π/2 + 8. As (Cα)−1 is regular for
|Reα| 6 8, these poles are found easily from (8), knowing the zeros of detA±±α with
positive real parts given from (12c) as (π + θ±1 − iεδ) for ε = +1,−1. We have then
α±s,ε = ±(π +8+ θ±1 − iεδ) with ε = +1 and−1, and

E±zs,ε = U(±ϕ − ϕ±s )e−ik(z cosβ−ρ sinβ cos(α±s,ε−ϕ))Res(f1(α + ϕ))|α+ϕ=α±s,ε
whereU is the Heaviside function(U(x) = 1 as x > 0, U(x) = 0 as x < 0), and
ϕ±s = 8 + Reθ±1 − 2 arctan(tanh(Im (θ±1 − iεδ)/2)) when k is real positive. These waves
are generally speaking attenuating waves passing along the faces to infinity (see Tamir and
Oliner (1963)). Under the condition Reθ±1 = 0, Im(θ±1 − iεδ) > 0, these waves remain
unattenuated. Note thatE±zs,ε = 0 for ϕ±s > 8, in particular for the isotropic case where
θ±1 = π/2;
• the last term in (24) is principally radiated conically from the edge asρ → ∞.

Approximatingf1(α+ ϕ) on SDP± by its value at the saddle pointsα = ±π then gives us

Eze = −e−iπ/4

√
2πkρ sinβ

e−ik(ρ sinβ+z cosβ) (f1(π + ϕ)− f1(−π + ϕ))+O(1/(kρ)3/2)
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asπ−|±28−(ϕ′+ϕ)| 6= 0 andπ−|ϕ′−ϕ| 6= 0, i.e. except when real poles cross the SDP.
In this respect, let us note that the integral term with SDP can be evaluated asymptotically
for ρ large so that the total field expression remains continuous as a pole crosses the SDP
(see Kouyoumjian and Pathak (1974), Bernard (1987), Lyalinov (1994) for real poles or
more generally Gennarelli and Palumbo (1984), Tuzhilin (1973a), Rojas (1988) for complex
poles).

5. Conclusion

We have studied the diffraction of a skew-incident plane wave by a passive anisotropic
wedge of any angle, whose principal axes of anisotropy are along and normal to the edge.
A new class of canonical cases has been derived by employing the factorization technique
for coupled equations, previously developed by the author.

The z-components of the field, in cylindrical coordinates(ρ, ϕ, z), are searched in the
form of Sommerfeld–Maliuzhinets integrals as follows∣∣∣∣Ez(ρ, ϕ, z)Hz(ρ, ϕ, z)

= e−ikz cosβ

2π i

∫
γ

∣∣∣∣ f1(α + ϕ)
f2(α + ϕ)/Zo

eikρ sinβ cosα dα

which satisfy the wave equation(1 + k2)u = 0. Conditions at the edge and at infinity
are assumed, and we consider an anisotropic constant impedance boundary condition
(E − n±(n±E)) = (Z±)(n± ∧ H) on each faceϕ = ±8, wheren± is the unit vector
along the outward-pointing normal to the face, and(Z±)/Zo a relative constant impedance
tensor. This implies coupled functional equations

A±α

∣∣∣∣ f1(α ±8)
f2(α ±8) − A

±
−α

∣∣∣∣ f1(−α ±8)
f2(−α ±8) = sinα

∣∣∣∣ c1

c2

with

A±α =
[

cosβ cosα sinα ± η±h sinβ
sinα ± sinβ/η±e − cosβ cosα

]
when (Z±)/Zo is characterized by a class of diagonal relative impedance matrices with
elementsη±h , η

±
e .

By employing an original factorization technique for coupled equations, the exact
closed-form solution is found when the products of these elements are equal to unity,
i.e. η±h η

±
e = 1. This case of anisotropy is important. It corresponds to geometrical optics

reflection coefficients which are independent of the polarization of the incident field, when
the plane of incidence is perpendicular to the edge (normal incidence).

We then obtain[
f1(α)

f2(α)

]
= 9an(α)

9an(ϕ′)

[
cos1(α) sin1(α)
− sin1(α) cos1(α)

] [
D1

D2

]
σ(α)

where1(α) = van(α) − van(ϕ′), with explicit closed-form expressions of the two special
functions9an(α) andvan(α).

A decomposition of the field in terms of geometrical optics field and of waves
specifically excited by the edge are specified.

Appendix 1

Let us consider a harmonic electromagnetic field with az dependence e−γ z, γ = ik cosβ
(time convention eiωt ). Let εo, µo, k, be the permittivity, the permeability and the associated



A new class of canonical cases 607

wavenumber of the exterior medium of propagation. The application of the Maxwell
equations leads us to the expressions of the Cartesian components of the electric and
magnetic fieldsE andH (see in particular Jones (1964)) according to

Ex = −γ
γ 2+ k2

∂Ez

∂x
− iωµo

γ 2+ k2

∂Hz

∂y
(A1.1)

Ey = −γ
γ 2+ k2

∂Ez

∂y
+ iωµo

γ 2+ k2

∂Hz

∂x
(A1.2)

Hx = −γ
γ 2+ k2

∂Hz

∂x
+ iωεo

γ 2+ k2

∂Ez

∂y
(A1.3)

Hy = −γ
γ 2+ k2

∂Hz

∂y
− iωεo

γ 2+ k2

∂Ez

∂x
. (A1.4)

Appendix 2

Let us show that eachz-componentEz andHz tends to a finite value independent ofϕ
as ρ → 0, and the other components are locally summable inρ in the vicinity of the
origin, when we have: (b) some constantsg±j and some analytic functionhj exist such as
|fj (α + ϕ)∓ fj (−α + ϕ)− g±j | < |hj (α)| on and within someγ+, for |Reϕ| 6 8, and as
hj is summable onγ+ and regular on and within it.

(a) Eachz-componentEz andHz tends to a finite value whenρ → 0:
For the sake of simplicity, let us nameu, the componentsEz or ZoHz, and omit the

index j for the function ofα. We have, from (2),

u = e−ikz cosβ

2π i

∫
γ+
(f (α + ϕ)− f (−α + ϕ))eikρ sinβ cosα dα (A2.1)

with γ+, a loop above all the singularities of the integrand from(i∞+arg(ik)+ (a1+π/2))
to (i∞+ arg(ik)− (a2+ π/2)) with Imα > d. Let us write

f (α + ϕ)− f (−α + ϕ) = [g+] + [f (α + ϕ)− f (−α + ϕ)− g+] (A2.2)

in the previous expression. We can then considereach integralrelated toeach term within
bracketsand prove they tend to a constant whenρ → 0.

For thefirst integral, we can proceed by two different methods:
• we can deform the pathγ and takea1 + a2 = π , so that, by periodicity, we obtain

that the only contribution comes for a finite segment at Imα = d of length 2π ;
• or equivalently, we can use the expression of the Bessel function

Jν(z) = e−iνπ/2

2π

∫
γ+

eiz cosαeiνα dα (A2.3)

so that we obtain

lim
ρ→0

1

2π i

∫
γ+
g+eikρ sinβ cosα dα = ig+Jo(0) = ig+. (A2.4)

As regards to thesecondintegral, from our assumptions in (b), it is absolutely convergent
for ρ = 0 and then tends to a constant asρ → 0. Moreover, the functionshj being regular
within γ+ and tending to 0 at infinity means that the integral attached to it vanishes as
ρ → 0, since we can deformγ+ taking d → ∞ as ρ → 0 while keeping the term
exp(ikρ sinβ cosα) bounded on the path.

Finally, the proof thatu tends to a finite value(= ig+ at z = 0) independent ofϕ as
ρ → 0 has been given.
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(b) Other components are summable inρ in the vicinity of the origin:
From the appendix 1, any other component of the fields, that we now name indifferently

v, is a linear combination of

∂u

∂ρ
= e−ikz cosβ

2π i

∫
γ+

ik sinβ cosα(f (α + ϕ)− f (−α + ϕ))eikρ sinβ cosα dα (A2.5)

and

∂u

ρ∂ϕ
= e−ikz cosβ

2π i

∫
γ+

ik sinβ sinα(f (α + ϕ)+ f (−α + ϕ))eikρ sinβ cosα dα. (A2.6)

Then, we let

fj (α + ϕ)∓ fj (−α + ϕ) = [g±] + [fj (α + ϕ)∓ fj (−α + ϕ)− g±j ] (A2.7)

since we have

−e−inπ/2

2π

∫
γ+

einαeikρ cosα dα = Jn(kρ) (A2.8)

which is O(kρ) as ρ → 0 when |Re(n)| = 1, it is clear that the integral attached to the
term [g±] of (A2.7), for the expression ofv, is O(kρ).

Then, using the bound we have, from condition (b), on the second term within brackets
in (A2.7), we can write

|v(ρ)| < B

∫
γ+
| cosα||h(α)||eikρ sinβ cosα|| dα| +O(kρ) (A2.9)

B being some constant independent ofρ, andh being summable onγ+.
Now, since we have

eikρ sinβ cosα = O(e−|ik|ρ sinβ sin(amin) cosh(Imα))

at infinity onγ+, with amin = min(a1, a2) > 0, and sinceh is summable onγ+, the integral
term present in (A2.9) is locally summable with respect toρ in the vicinity of ρ = 0, and
so, finally, v(ρ) is locally summable with respect toρ in this region, which achieves the
proof.

Appendix 3. The inversion theorem of Maliuzhinets and the
Sommerfeld–Maliuzhinets transform

We give here details concerning the inversion theorem of Maliuzhinets and the Maliuzhinets
transform.

Two theorems published by Maliuzhinets (1958) establish the basis of this transform.
Too often, in applications, the second theorem is neglected or the first theorem is given in
a partial form; we prefer to give them in their original form.

Theorem 1.Let M,a, b, c, d be positive numbers; letε,m be numbers satisfying the
conditions: 0< ε < π, | arg(m)| 6 π/2. Given the integral equation

F(r) = 1

2π i

∫
γ

emr cosαf (α) dα. (A3.1)

The given functionF(r) satisfies the inequality|F(r)| < M|r|−1+aeb|r| for positive
values ofr and also in the entire regionc < |r| <∞, | arg(r)| < ε1, where this function is
analytic and regular.
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The contour of integrationγ is made of two loops. The loopγ1 consists of the half
lines Reα = arg(m)± (ε + π/2), Imα > d and the line segment Imα = d. The loopγ2 is
symmetric toγ1 with respect to inversion in the originα = 0.

Then, among those analytic functionsf (α), which are regular on the contourγ and
within both loops except possibly at infinitely distant points, and which satisfy in these
regions the inequality|f (α)| < M1 exp[(1− a1)|Imα|], there exists one and only one odd
function which is a solution of the integral equation (A3.1). For Re(m cosα) > b this
function is represented by the integral

f (α) = −m sinα

2

∫ →∞
→0

F(r)e−mr cosα dr (A3.2)

for this functiona1 = a.

Theorem 2.Let f (α) be an analytic function, regular on the contourγ and in the interior
of the loopsγ1 and γ2 of theorem 1 everywhere, except for infinitely distant points. For
|Imα| → ∞, let f (α) = O(exp[(n+ 1− a)|Imα|]) in these regions, where 0< a < 1 and
n is a positive integer or zero.

The, in order for

1

2π i

∫
γ

emr cosαf (α) dα = 0 (A3.3)

to hold for r > 0, it is necessary and sufficient that the functionsf (α) have the form

f (α) = f1(α)+ sinα
n∑
ν=0

νcν cosν−1 α (A3.4)

wheref1(α) is an arbitrary even function and the coefficientscν are arbitrary constants; or,
as follows from (A3.4), that the functionsf (α) satisfy the functional equation

f (α)− f (−α) = 2 sinα
n∑
ν=0

νcν cosν−1 α.

For the proof of the last theorem, Maliuzhinets remarks that it is possible to consider that
F(r) is O(r−n+a) instead of O(r−1+a) asr → 0, by taking in theorem 1:rn−1F(r)↔ F(r),

Dn−1(f )↔ f with D(f ) = 1
m

∂
∂α

(
f (α)

sinα

)
, and then integratingDn−1(f ) = 0.

Notes.
• For any function regular as|Imα| > d and having a period 2π , the semi-infinite lines

of γ with |Imα| > d, when defined withε = π/2, give no contribution to the integral
A3.1, by mutual cancellation.
• We have, for| arg(z)| < π/2 (see Gradshtein (1980)),

Jν(z) = −e−iνπ/2

2π

∫
γ1

eiz cosαeiνα dα (A3.5)

and then, fromH(2)
ν (z) = i(J−ν(z)− eiνπJν(z))/ sin(νπ)

H(2)
ν (z) = −eiνπ/2

2π i sin(νπ)

∫
γ

eiz cosαeiνα dα.

• In the previous theorems, we assumed thatF(ρ) is analytical and regular in the region
c < |ρ| < ∞, | arg(ρ)| < ε1, in order to have the integral expression off regular within
γ for ε = ε1 > 0. If we can replace the dependence with respect toρ and k by the one
with respect tokρ, we can then obtain the latter property from the regularity properties of
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F in some vicinity ofk. Let us note that whenF(ρ) is a field, the regularity is given for
Imω < 0(Re ik > 0, k/ω being real when there is no loss in the medium of propagation)
from the causality principle.

Appendix 4

Let us show here how (11c–d) are equivalent to the equalities furnished by the diagonal
members of (10a), when (11a) and (11b) are satisfied.

We can write the equalities on the diagonal elements in (10a) as follows

1

detAα
g

(
a+
c+
,
d−
b−

)
= − ε

c+b−
(a+b+ − c+d+) (A4.1)

1

detAα
g

(
d+
b+
,
a−
c−

)
= ε

c−b+
(a+b+ − c+d+). (A4.2)

If one divides (A4.1) by (A4.2), one obtains (11c):(
b+
c+

)(
b−
c−

)−1

= −g(a+/c+, d−/b−)
g(d+/b+, a−/c−)

.

The termg(d+/b+, a−/c−) changes into−g(a+/c+, d−/b−) whenα changes into−α, so
that the equation (A4.2), modified by taking the argument−α, then divided by (A4.1), gives
us (11d):

(b+a+)
(b−a−)

= detA−α
detAα

1− (c−/a−)(d−/b−)
1− (c+/a+)(d+/b+) .

Inversely, let us show now that, when (11a) and (11b) are satisfied, (11c) and (11d) are
sufficient to recover (A4.1) and (A4.2).

As a matter of fact, writing

1

detAα
g

(
a+
c+
,
d−
b−

)
= −w1(α)

c+b−
(a+b+ − c+d+) (A4.3)

1

detAα
g

(
d+
b+
,
a−
c−

)
= w2(α)

c−b+
(a+b+ − c+d+) (A4.4)

we have (11c) that implies

w1 = w2 = w
and then (11d) which gives us

w(α) = w(−α)
which leads us to (A4.1) and (A4.2) withε replaced by the functionw.

Therefore, when (11a–d) are satisfied, an equation, similar to (8), whereε is replaced
by w, is satisfied, and so we have

(Cα±8)(A±α )
−1(A±−α)(C−α±8)

−1 = w±(α)Id (A4.5)

where Id is the identity matrix,w being denotedw± for each face.
Now, if one changes the sign ofα in the last equation (A4.5), one obtains the inverse

of the left member and thus

w(−α) = 1/w(α).
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Sincew(α) is even, this leads us to

w(α) = +1 or − 1 (A4.6)

which completes the demonstration.
Note that if(Cα±8)(A±α )

−1|α=0 and their inverse are definite, thenw(α) = 1.

Appendix 5

Let us explain why, whenn is not (the function) zero (i.e. in the coupled case),c andb are
not zero if det((Cα)−1) 6= 0.

Assuming that the functionn is not (the function) zero, we deduce, from the nondiagonal
terms of (10a), that the functionc (resp.b) cannot be zero, except ifa (resp.d), and then
det((Cα)−1), would be zero. Note that a comparable reasoning is possible when we assume
p is not zero.

Appendix 6

We give here the solution ofs(α ±8)− εs(−α ±8) = S±(α)(ε = + or − 1), when the
functionS± is regular on the imaginary axis, exponentially decreasing as|Imα| → ∞, and
s is regular as|Reα| 6 8.

Let us consider, the functional equations fors

s(α ±8)− εs(−α ±8) = S±(α) (A6.1)

ε being +1 or −1, the functions S± being analytic on the imaginary axis and
O(exp(−a|Imα|)), a > 0, as |Imα| → ∞. Let us search the solutions, regular as
|Reα| 6 8 (even at infinity), as follows

s(α) = s(i∞)+ s(−i∞)
2

+ s(i∞)− s(−i∞)
2

sign(Imα)+ so(α) (A6.2)

whereso is absolutely integrable on any line Reα = αo as |αo| 6 8. We will have then
s(i∞)− εs(−i∞) = 0. This type of equation has been solved, in particular in the works of
Maliuzhinets, Tuzhilin, Bernard, for the analytical determination of the solutions of wedge
diffraction problems.

Let us take the Fourier transform of (A6.1). We obtain a system of two equations:

F(ω)e∓iω8 − εF(−ω)e±iω8 = H±(ω). (A6.3)

Multiplying them by exp(∓iω8) and finding the difference, we obtain that the function
F , the Fourier transform ofs, follows

2iF(ω) sin(2ω8) = H−(ω)eiω8 −H+(ω)e−iω8.

The analytic function obtained by dividing the right member of the previous equality
with 2i sin(2ω8) does verify (A6.3), and then, the inverse Fourier transform (integral taken
in the sense of principal value) of this expression satisfies (A6.1) for|Reα| < 8. So, we
have the developed form ofs, for |Reα| < 8,

s(α) = s(i∞)+ s(−i∞)
2

+ i√
2π

v.p
∫ i∞

−i∞

(
R+(ω)e−iω8

i sin(2ω8)
− R−(ω)e

iω8

i sin(2ω8)

)
e−iωα dω

(A6.4a)
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with

R±(ω) = −i

2
√

2π

∫ i∞

−i∞
S±(α′)eiωα′ dα′ (A6.4b)

where the quantitys(i∞)+s(−i∞) is arbitrary whenε = 1 and equal to zero whenε = −1.
The term v.p. means that we take the principal value of the integral.

For the case where the functions is v′an or (ln(9an))′, R± can be evaluated explicitly
by the method of residues. Besides, we haveε = −1 so s(i∞) + s(−i∞) = 0. So, we
obtain a simple integral expression ofvan and9an, corresponding to (16a) and (21a).

Since the functionsS± are absolutely integrable, it is possible to simplify the form
(A6.4a) by interchanging the order of integration, so that we obtain as in Tuzhilin (1973b)
and Bernard (1990a), for|Reα| < 8,

s(α) = s(i∞)+ s(−i∞)
2

+ −i

88

∫ i∞

−i∞
dα′

(
S+(α′) tan

( π
48

(α +8− α′)
)

−S−(α′) tan
( π

48
(α −8− α′)

))
. (A6.5)

ConsideringS± = O(exp(−a|Imα|)) and ε = −1, and developing the terms tan(.) in
(A6.5), we obtain that

s(α) = ±1

88

∫ i∞

−i∞
dα′(S+(α′)− S−(α′))+O(e−c|Imα|)

as Imα→±∞, with c > 0 being some constants independent ofα.
For (van)′ and (ln9an)′, the termsS± are the derivatives of some known analytic

functions so that the integral term can be determined directly. Then, fors = (van)
′, we

obtain van(α) = A1 + O(e−c|Imα|), and, fors = ln(9an)′, 9an(α) = A2 exp(µ|Imα|)(1+
O(e−c|Imα|)) with µ = π/28, A1 andA2 being some constants. This behaviour, deduced
from an expression valid for|Reα| < 8, remains valid in any band|Reα| < constant, by
the argument of continuation (from (A6.1) or from the deformation of the integration path
in (A6.5)).

Notes.
• As Maliuzhinets found,

v.p.
∫ i∞

−i∞
≡ 1

2

(∫ i∞−ε1

−i∞−ε1

+
∫ i∞+ε1

−i∞+ε1

)
with ε1 < a.
• The expression (A6.5) can be continued analytically for|Reα| > 8 by considering

the residue due to the poles crossing the path of integration, so that we verify easily that the
continuation of this expression satisfies the initial functional equations. This latter expression
continues to satisfy the functional equation when the analytic functionS±, regular on the
imaginary axis, is only assumed to be absolutely integrable.

References

Bernard J M L 1987 Diffraction by a metallic wedge covered with a dielectric materialWave Motion9 543–61
——1990a On the diffraction of an electromagnetic skew incident wave by a non perfectly conducting wedgeAnn.

Telecom.45 30–9 (errata: 9–10, p 577)



A new class of canonical cases 613

——1990b Properties of the solution and reciprocity theorem for a class of wedge problem at skew incidence
Proc. Conf. IEEE-AP/Dallas

——1994 On the time-domain scattering by a passive classical frequency dependent wedge-shaped region in a
lossy dispersive mediumAnn. Telecom.49 673–83 (to exchange figure 3(b) for figure 4, read p 677 Imα = 0
instead of Imα 6= 0)

——1995PhD ThesisUniversit́e de Paris-Sud
Jones D S 1964The Theory of Electromagnetism(Oxford: Pergamon)
——1991 Wiener–Hopf splitting of a 2× 2 matrix Proc. R. Soc.A 434 419–33
Gennarelli C and Palumbo L 1984 A uniform asymptotic expansion of a typical diffraction integral with many

coalescing simple pole singularities and a first order saddle pointIEEE Trans. AP32 1122–4
Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products(London: Academic)
Kouyoumjian R G and Pathak P H 1974 A uniform geometrical theory of diffraction for an edge in a perfectly

conducting surfaceProc. IEEE62 1448–61
Lier E and Schaug-Pettersen 1987 The strip-loaded Hybrid-mode feed hornTrans. AP35 1086–8
Lyalinov M A 1994 On one approach to an electromagnetic diffraction problem in a wedge shaped regionJ. Phys.

A: Math. Gen.27 183–9
Maliuzhinets G D 1958a Excitation, reflection and emission of surface waves from a wedge with given face

impedancesSov. Phys.–Dokl.3 752–5
——1958b Inversion formula for the Sommerfeld integralSov. Phys.–Dokl.3 52–6
Rojas R G 1988 Wiener-Hopf of the EM diffraction by an impedance discontinuity in a planar surface and by an

impedance half-planeIEEE AP36 71–83
Tamir T and Oliner A A 1963 Guided complex wavesProc. IEE 110 310–24
Tuzhilin A A 1970 The theory of Maliuzhinets functional equations I. Homogeneous functional equations, general

properties of solutions, special casesDiff. Urav. 6 692–704
——1973a Diffraction of plane sound wave in an angular domain with absolutely hard and slippery face bounded

by thin elastic platesDiff. Urav. 9 1875–88
——1973b The theory of Maliuzhinets inhomogeneous functional equationsDiff. Urav. 9 2058–64
Vaccaro V G 1980 The generalized reflection method in electromagnetismArch. Elekt. Ubertrag. Tech.34 493–500
Yee K S and Chang A H 1991 Scattering theorems with anisotropic surface boundary conditions for bodies of

revolutionTrans. AP39 1041–3


